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This is very similar to the solution of the time-independent Ornstein-Uhlenbeck pro-

cess, as derived in Sect. 4.5.6, equation (4.5.53).
From this we have

(x(1)) = BXD[—Of’A(I') (Il"](x(O)), (4.5.110)
(x(t),x" (1)) = exp [ - ({A(t') dt’](x(O), x(0)yexp [ - ftAT(r’) dt’]
0

+ Of dr’ exp| - ﬂfA(s)ds]B(t’ JBT(¢)exp [ - flAT(s)ds]. 45.111)

The tirpe-dependent Ornstein-Uhlenbeck process will arise very naturally in connec-
tion with the development of asymptotic methods in low-noise systems.

5. The Fokker-Planck Equation

In the next two chapters, the theory of continuous Markov processes is developed
from the point of view of the corresponding Fokker-Planck equation, which gives
the time evolution of the probability density function for the system. This chapter is
devoted mainly to single variable systems, since there are a large number of exact
results for single variable systems, which makes the separate treatment of such sys-
tems appropriate. The next chapter deals with the more general multivariable aspects
of many of the same issues treated one-dimensionally in this chapter.

The construction of appropriate boundary conditions is of fundamental impor-
tance, and is carried out in Sect.5.1 in a form applicable to both one-variable and
many-variable systems. A corresponding treatment for the boundary conditions on
the backward Fokker-Planck equation is given in Sect.5.1.2. The remaining of the
chapter is devoted to a range of exact results, on stationary distribution functions,
properties of eigenfunctions, and exit problems, most of which can be explicitly
solved in the one variable case.

We have already met the Fokker-Planck equation in several contexts, starting from
Einstein’s original derivation and use of the diffusion equation (Sect. 1.2), again as a
particular case of the differential Chapman-Kolmogorov equation (Sect. 3.5.2), and
finally, in connection with stochastic differential equations (Sect.4.3.5). There are
many techniques associated with the use of Fokker-Planck equations which lead to
results more directly than by direct use of the corresponding stochastic differential
equation; the reverse is also true. To obtain a full picture of the nature of diffusion
processes, one must study both points of view.

The origin of the name “Fokker-Planck Equation” is from the work of Fokker
(1914) [5.1, 5.2] and Planck (1917) [5.2] where the former investigated Brownian
motion in a radiation field and the latter attempted to build a complete theory of
fluctuations based on it. Mathematically oriented works tend to use the term “Kol-
mogorov’s Equation” because of Kolmogorov’s work in developing its rigorous basis
[5.3]. Yet others use the term “Smoluchowski Equation” because of Smoluchowski’s
original use of this equation. Without in any way assessing the merits of this termi-
nology, I shall use the term “Fokker-Planck equation” as that most commonly used
by the audience to whom this book is addressed.
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5.1 Probability Current and Boundary Conditions

The FPE is a second-order parabolic partial differential equation, and for solutions
yve need an initial condition such as (5.2.5) and boundary conditions at the end of thé
interval inside which x is constrained. These take on a varicty of forms.

It' is simpler to derive the boundary conditions in general, than to restrict consid-
eration to the one variable situation. We consider the forward equation |

2

K] 9
(? Z,t = — _Al . l —_R..
1p(z,1) Z Z (z.)p(z,0) + } 2 5eda Bij(z,t)p(z,1). (5.1.1)

We note that this can also be written

ap(z,t) a
Frami Z 5z—ili(z, t)=0, (5.1.2)

where we define the probability current

0
Ji 1) = A; s —1 —B..
(z,1) = Ai(z, )p(z,1) — 5 s Bij(z,t)p(z,1). (5.1.3)
quation (5.5) has the form of a local conservation equation, and can be written in
an integral form as follows. Consider some region R with a boundary S and define

P(R,1) = 1{ dz p(z,t), (5.1.4)
then (5.1.2) is equivalent to
AP(R, 1)
ar =_sde"‘J(z”)’ (5.1.5)

where n i§ Fhe putyvard pointing normal to S. Thus (5.1.5) indicates that the total loss
of probability is given by the surface integral of J over the boundary of R.

Y

Fig. 5.1. Regions used to demonstrate that the probability current is the flow of probability

t\l’i/etcan 1s'?ow as well that the current J does have the somewhat stronger property,
guafa surface mtejgral over any surface § gives the net flow of probability across that
surface. For consider two adjacent regions R; and R,, separated by a surface S;,. Let

< ) y and 12
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Then the net flow of probability can be computed by noting that we are dealing
here with a process with continuous sample paths, so that, in a sufficiently short time
At, the probability of crossing S, from R; to R) is the joint probability of being in
R, at time t and Ry, at time ¢ + At,

= [dx [dyp(x,t+At;g,1). (5.1.6)
R R

The net flow of probability from R; to Ry is obtained by subtracting from this the
probability of crossing in the reverse direction, and dividing by At; i.e.

1
lim — fdx [ dyp(x,t+ Aty 1) — ply,t+ At x,1)]. (5.1.7)
Ar—0 At g, R>
Note that
fdx [ dyp(x,t;y,1) =0 (5.1.8)
R R

since this is the probability of being in Ry and R, simultaneously. Thus, we can write

(6.1.7) = Rf dx [ dy (8, p(x,t';y,t) = 0 py, 1 x,)lr—, (5.1.9)
and using the Fokker-Planck equation in the form (5.5)
0 0
=—[dxY, —Jix,t; Ry, t) + [dy ¥ —Ji(y, Ry, 1), (5.1.10)
R 10X R T Oy

where J;(x, t; Ry, t) is formed from

P, 6, Ry 1) = [ dy p(x,1;9.1), CRRYY
R>

in the same way as J(z, ?) is formed from p(z,t) in (5.1.3) and J;(y, t; R ¢t) is defined

similarly. We now convert the integrals to surface integrals. The integral over S

vanishes, since it will involve p(x, t; Ry, f), with x not in R, or on its boundary (except

for a set of measure zero.) Similarly the integral over S; vanishes, but those over S;2

do not, since here the integration is simply over part of the boundaries of R, and R,.
Thus we find, the net flow from R, to R) is

[dSn-{Jx,t;Ry, 1)+ J(x,1;Ry, 1)}, (5.1.12)
Si2

and we finally conclude, since x belongs the union of R; and R», that the net flow of
probability per unit time from R; to Ry

1
= lim — [dx fdy[p(x,t+At;y,t)—p(y,t+ At;x,t)] = [dSn-J(x,1),
A0 At g, Ry Si

where n points from R to R;. (5.1.13)
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5.1.1 Classification of Boundary Conditions

We can now consider the various kinds of boundary condition separately.

a) Reflecting Barrier: We can consider the situation where the particle cannot leave
a region R, hence there is zero net flow of probability across S, the boundary of R.
Thus we require

n-J(z,t)=0, forzeS, mr=normaltoS, (5.1.14)

where J(z,1) is given by (5.5.4).

Since the particle cannot cross S, it must be reflected there, and hence the name
reflecting barrier for this condition.
b) Absorbing Barrier: Here, one assumes that the moment the particle reaches S, it

is removed from the system, thus the barrier absorbs. Consequently, the probability
of being on the boundary is zero, i.e.

pz,)=0, forzeS. (5.1.15)

¢) Boundary Conditions at a Discontinuity: It is possible for both the A; and Bj;
coefficients to be discontinuous at a surface S, but for there to be free motion across

S. Consequently, the probability and the normal component of the current must both
be continuous across S,

n-J@ls, = n-J@)s_, (5.1.16)
P)ls, p@ls_, (5.1.17)

where §+,S_, as subscripts, mean the limits of the quantities from the left and right
hand sides of the surface.

The d('eﬁnition (5.1.3) of the current, indicates that the derivatives of p(z) are not
necessarily continuous at S.

5.1.2 Boundary Conditions for the Backward Fokker-Planck Equation

We suppolse that p(x, | x’, ') obeys the forward Fokker-Planck equation for a set of
X, t gnd x ,t', and that the process is confined to a region R with boundary S. Then,
if 5 is a time between ¢ and ¢,

_9 ' 9
0—a—sp(x.tlx,r)=afdyp(x,rly,s)p(y,slx’,r'), (5.1.18)

yvhgre we l.1ave used the Chapman-Kolmogorov equation. We take the derivative 4/ds
inside the integral, use the forward Fokker-Planck equation for the second factor and
the backward equation for the first factor. For brevity, let us write

r.s) = p(y,s|x’,t),
P, s) = p(x,tly,s).
Then,

(5.1.19)

5.2 Fokker-Planck Equation in One Dimension 1/

d i _
0= [dy [— 2, a_(AiP) + X ——Bip)|P
R Yi

i ij Oyidy,
+,{‘I"’["Z,-;A"Z—5,_§B"a_j,zgy_,]p’ (5.1.20)
and after some manipulation
=Jdy % 29% {—A,-pp + % Zjl{ﬁa—?;(&,p) = p&,%]} : (5.1.21)
:szi;dS' {[‘7 [—A,p + % Z/) 6%,-(3”[))]} - %{%}d&p (Zj] B,,g—;—)j). (5.1.22)

We now treat the various cases individually.
a) Absorbing Boundaries: This requires p = 0 on the boundary. That it also re-
quires j(y,7) = 0 on the boundary is easily seen to be consistent with (5.1.22) since

on substituting p = 0 in that equation, we get

9
O:fﬁZdSiBijl. (5.1.23)
50 Ay,

However, if the boundary is absorbing, clearly
p(x,tly,s) =0, for y € boundary, (5.1.24)

since this merely states that the probability of X re-entering R from the boundary is

Zero.
b) Reflecting Boundaries: Here the condition on the forward equation makes the
first integral vanish in (5.1.22). The final factor vanishes for arbitrary p only if

> mB,-j(y)—a-[p(x, tly,s)]=0. (5.1.25)
ivj dyj

In one dimension this reduces to

(%p(x,rly, 108 (5.1.26)

unless B vanishes.
¢) Other Boundaries: We shall not consider these this section. For further details

see [5.4].

5.2 Fokker-Planck Equation in One Dimension

In one dimension, the Fokker-Planck equation (FPE) takes the simple form

ofxt) 8. laie _
o = A DfxD] + 5 o5 B Of (1) (5.2.1)

In Sects. 3.4, 3.5, the Fokker-Planck equation was shown to be valid for the condi-
tional probability, that is, the choice
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flx, 1) = p(x,t]| xo,19), (5.2.2)
for any initial xo, ¢, and with the initial condition

Pp(x, to | xo0, ) = 6(x — xg). (5.2.3)

However, using the definition for the one time probability

plx,t) = [dxo p(x, t; x0,80) = [ dxg p(x, t| x9, 10) p(xo, o) » (5.2.4)

we see that it is also valid for p(x, t) with the initial condition
IJ(xv t)lt o — [](xa t()) ) (525)

which is generally less singular than (5.2.3).

From the result of Sect. 4.3.5, we know that the stochastic process described by a
conditional probability satisfying the FPE is equivalent to the Ito stochastic differen-
tial equation (SDE)

dx(t) = Alx(1),f]dt + +/B[x(2),t1dW(r), (5.2.6)

and that the two descriptions are to be regarded as complementary to each other. We
will see that perturbation theories based on the FPE are very different from those
based on the SDE and both have their uses.

5.2.1 Boundary Conditions in One Dimension

The general formulation of boundary conditions as given in Sect.5.1.1 can be aug-
mented by some more specific results for the one-dimensional case.

a) Periodic Boundary Condition: We assume that the process takes place on an
interval [a, b]in which the two end points are identified with each other. (this occurs,
for example, if the diffusion is on a circle). Then we impose boundary conditions
derived from those for a discontinuity, i.e.,

I lim p(x,1) = lim p(x,1), (5.2.7)
x—b- r—a+
I: lim JCx,7) = lim JCx,1). (5.2.8)

Most frequently, periodic boundary conditions are imposed when the functions
A(x,1) and B(x, 1) are periodic on the same interval so that we have

A, 1) = Aa,1),

B(b,1) = B(a,1), (5.2.9)

and this means that I and II simply reduce to an equality of p(x, ¢) and its derivatives
at the points a and b.

b) Prescribed Boundaries: If the diffusion coefficient vanishes at a boundary, we
have a situation in which the kind of boundary may be automatically prescribed.
Suppose the motion occurs only for x > a. If a Lipschitz condition is obeyed by
A(x,t) and VB(x, 1) at x = a Sect. 4.3.1b) and B(x, {) is differentiable at x = g then

0:B(a,n) = 0. (5.2.10)
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The SDE then has solutions, and we may write

dx(t) = A(x, t)dt + /B(x, 1) dW(z). (5.2.11)

In this rather special case, the situation is determined by the sign of A(x,t). Three
cases then occur, as follows.

i) Exit boundary. In this case, we suppose
A(a,1) <0, (5.2.12)
so that if the particle reaches the point , it will certainly proceed out of region
to x < a. Hence the name “exit boundary”

ii) Entrance boundary. Suppose
Aa,1)>0. (5.2.13)

In this case, if the particle reaches the point a, the sign of A(a, t) is such as to
return it to x > a; thus a particle placed to the right of a can never leave the
region. However, a particle introduced at x = a will certainly enter the region.
Hence the name, “entrance boundary™.

iii) Natural boundary. Finally consider
A(a,t)=0. (5.2.14)

The particle, once it reaches x = a, will remain there. However it can be demon-
strated that it cannot ever reach this point. This is a boundary from which we can
neither absorb nor at which we can introduce any particles.

c) Feller’s Classification of Boundaries: Feller [5.4] showed that in general the
boundaries can be assigned to one of the four types; regular, entrance, exit and natu-
ral. His general criteria for the classification of these boundaries are as follows.

Define

FX) = exp [—ZfdsA(s)/B(s)] , (5.2.15)
g(x) = 2/[B(x)f(x)], (5.2.16)
M) = ) g (s)ds, 52.17)
ha(x) = g(x) ff(s) ds. (5.2.18)

Here xo € (a, b), and is fixed. Denote by
ZL(x1,x), (5.2.19)

the space of all functions integrable on the interval (x;, x,).
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Then the boundary at a can be classified as

I: Regular: if f(x) €.%(a,x) and g(x) € .Z(qa, xg)
II: Exit: if g(x) ¢ L(a,xp) and hy(x) € Z(a, xp)
III: Entrance: if g(x) € .%(a,x9) and hy(x) € ZL(a, xg)
IV: Natural: all other cases.

It can be seen from the results of Sect.5.3 that for an exit boundary there is no
normalisable stationary solution of the Fokker-Planck equation, and that the mean
time to reach the boundary, (5.5.24), is finite. Similarly, if the boundary is exit, a
stationary solution can exist, but the mean time to reach the boundary is infinite. In
the case of a regular boundary, the mean time to reach the boundary is finite, but
a stationary solution with a reflecting boundary at a does exist. The case of natural
boundaries is harder to analyse. The reader is referred to [5.4] for a more complete
description.

c¢) Boundaries at Infinity: All of the above kinds of boundary can occur at infin-
ity, provided we can simultaneously guarantee the normalisation of the probability
which, if p(x) is reasonably well behaved, requires

gl_)n;lo ple,t)=0. (5.2.20)

If d,p(x) is reasonably well behaved (i.e., does not oscillate infinitely rapidly as
X — 00),

.\l‘i_'ncloaxp(x, t)=0, (5.2.21)

so that a nonzero current at infinity will usually require either A(x,t) or B(x,?) to
become infinite there. Treatment of such cases is usually best carried out by changing
to another variable which is finite at x = oo

Where there are boundaries at x = +oo and nonzero currents at infinity are permit-
ted, we have two possibilities which do not allow for loss of probability:

i) J(zoo,)=0, (5.2.22)
i) J(+o0,1) = J(=00,1). (5.2.23)

These are the limits of reflecting and periodic boundary conditions, respectively.

5.3 Stationary Solutions for Homogeneous Fokker-Planck
Equations

We recall (Sect. 3.7.2) that in a homogeneous process, the drift and diffusion coeffi-
cients are time independent. In such a case, the equation satisfied by the stationary
distribution is

2

d 1d
2z AP0 = =~ [B)py(x)] = 0, (53.1)
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which can also be written simply in terms of the current (as defined in Sect.5.1)

dix) _ 0, (5.3.2)
dx

which clearly has the solution
J(x) = constant . (5.3.3)
Suppose the process takes place on an interval (a, b). Then we must have
J@)=Jx)=Jb)=J, (5.3.4)

and if one of the boundary conditions is reflecting, this means that both are reflecting,

and J = 0.
If the boundaries are not reflecting, (5.3.4) requires them to be periodic. We then

use the boundary conditions given by (5.2.7) and (5.2.8).
a) Zero Current—Potential Solution:
Setting J = 0, we rewrite (5.3.4) as

1d
A(x)ps(x) = 5 —-[B(X)ps( x)] = (5.3.9)
for which the solutlon is

py(x) = L(V—) exp [2 [ dXAG)/BKY )] (5.3.6)

where ./ is a normalisation constant such that
b
fdxpy(x)=1. (5.3.7)
a

Such a solution is known as a potential solution, for various historical reasons, but
chiefly because the stationary solution is obtained by a single integration (the full
significance of this term will be treated in Sect. 6.2.2).

b) Periodic Boundary Condition: Here we have nonzero current J and we rewrite
(5.3.3) as

A(x)ps(x) — = ——[B(X)ps(x)] (5.3.8)

However, J is not arbitrary, but is determined by normalisation and the periodic
boundary condition

ps(@) = ps(), (5.3.9)
J@ =J0). (5.3.10)

For convenience, define
W(x) = exp [2] dx A(X)/B(X )] . (5.3.11)
a

Then we can easily integrate (5.3.8) to get

ps(X)B(x)  ps(a)B(a) X dx!
= =22 [ 5.3.12
V() v@  Hlw (5.3:12)




By imposing the boundary condition (5.3.9) we find that

[B(b) _ B(a)
R ZONR7C) i
- b dx/ ? (53]3)
J
a Y(x’)
so that
v dx’ B(b) b dx' B(a)
J +/
a ! b X !
ps(x) = ps(a) EEIO e P (5.3.14)

B(x) b dx'
Y(x) o Y(x')
c) Infinite Range and Singular Boundaries: In either of these cases, one or the
other of the above possibilities may turn out to be forbidden because of divergences,

etc. A full enumeration of the possibilities is, in general, very complicated. We shall
demonstrate these by means of the examples given in the next section.

5.3.1 Examples of Stationary Solutions

?) Qiﬂ'usion in a Gravitational Field: A strongly damped Brownian particle mov-
ing in a constant gravitational field is often described by the stochastic differential
equation (8.2.15)

dx = —gdt+ NDdW(t), (5.3.15)
for which the Fokker-Planck equation is

op 0 1 6%

o = amOP* 3Pga 310

Qn the interval (a, b) with reflecting boundary conditions, the stationary solution is
given by (5.3.6), i.e.

ps(x) = A exp[-2¢x/D], (5.3.17)

where we have absorbed constant factors into the definition of ./

(?learly this solution is normalisable on (a, b) only if a a is finite, though b may
be infinite. The result is no more profound than to say that particles diffusing in a
beaker of fluid will fall down, and if the beaker is infinitely deep, they will never
stop falling! Diffusion upwards against gravity is possible for any distance but with
exponentially small probability.

'IIIdow assume periodic boundary conditions on (a,b). Substitution into (5.3.14)
yields

ps(x) = ps(a), (5.3.18)
a constant distribution.

The interpretation is that the particles pass freely from a to b and back.

b) Ornstein Uhlenbeck Process: We use the notation of Sect.3.8.4 where the
Fokker-Planck equation was

J.0  OLALIVLIALY OULULIULD LUL L LIVIIUEULMAIUD & WINALL 5 LAV LAULLiID [y

ps(x)
Fig. 5.2. Non-normalisable “stationary” p,(x) for the reac-
X tion X + A = 2X.

ap 8 1 _&*p

22— Zkxp) + =D—= | 5.3.19

o = o P T PG (5-3.19)
whose stationary solution on the interval (a, b) with reflecting barriers is

ps(x) = N exp(=kx*/D). (5.3.20)

Provided k > 0, this is normalisable on (-0, c0).
If k < 0, one can only make sense of it on a finite interval. In this case suppose

a=-b<0. (5.3.21)
so that from (5.3.11),

Y(x) = exp [—%(x2 - az)] . (5.322)
and if we consider the periodic boundary condition on this interval, by noting

Y(a) = y(-a), (5.3.23)
we find that

W(x) k 2
= Sl —_—( - 53.24
ps(x) = ps(a) @ ps(a) exp [ o~ ( )

so that the symmetry yields the same solution as in the case of reflecting barriers.
Letting @ — oo, we see that we still have the same solution. The result is also true

if a — oo independently of b — —oo, provided k > 0.

¢) A Chemical Reaction Model: Although chemical reactions are normally best

modelled by a birth-death master equation formalism, as in Chap. 11, approximate

treatments are often given by means of a Fokker-Planck equation. The reaction

X+A=2X, (5.3.25)

is of interest since it possesses an exit boundary at x = 0 (where x is the number of
molecules of X). Clearly if there is no X, a collision between X and A cannot occur
so no more X is produced.

The Fokker-Planck equation is derived in Sect. 11.6.1 and is

a,p(x,t) = =0y [(ax - xz) p(x, t)] + %6% [(ax + xz) p(x, l‘)] . (5.3.26)



124 5. The Fokker-Planck Equation

We introduce reflecting boundaries at x = @ and x = 3. In this case, the stationary
solution is

ps(x) = e Ma+xytal ! (5.3.27)

which is not normalisable if @ = 0. The pole at x = 0 is a result of the absorption
there. In fact, comparing with (5.2.18), we see that

B(0,1) = (ax + x%)ep =0,
AQ,1) = (ax - x)y0 =0, (5.3.28)
8:B0,t) = (a+2x),-0 >0,
so we indeed have an exit boundary. The stationary solution has relevance only if
@ > 0 since it is otherwise not normalisable. The physical meaning of a reflecting
barrier is quite simple: whenever a molecule of X disappears, we simply add another
one immediately. A plot of py(x) is given in Fig. 5.2. The time for all x to disappear

is in practice extraordinarily long, and the stationary solution (5.3.27) is, in practice,
a good representation of the distribution except near x = 0.

5.4 Eigenfunction Methods for Homogeneous Processes

We shall now show how, in the case of homogeneous processes, solutions can most
naturally be expressed in terms of eigenfunctions. We consider reflecting and absorb-
ing boundaries.

5.4.1 Eigenfunctions for Reflecting Boundaries

We consider a Fokker-Planck equation for a process on a interval (a, b) with reflect-
ing boundaries. We suppose the Fokker-Planck equation to have a stationary solution
Ps(x) and the from

0rp(x, 1) = ~0:[A(xX)p(x, )] + LP[Bx)p(x,1)]. (5.4.1)
We define a function g(x, 1) by

p(x,t) = py(x)q(x, 1), 5.4.2)
and, by direct substitution, find that q(x, 1) satisfies the backward equation

01q(x, 1) = A(x)d.q(x, 1) + L B(x)d%q(x,1). (5.4.3)
We now wish to consider solutions of the form

p(x,1) = Py(x)e™, (5.4.4)

q(x.1) = Qyx)e, (5.4.5)
which obey the eigenfunction equations

~OAM)PA)] + JUBxPY(1)] = —AP(x), (5.4.6)

A(X)0xQx(x) + 1 B(0)A204(x) = -0y (x). (5.4.7)
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i) Relationship between P, and Q, : From (5.4.2) and (5.4.3) it follows that

5.4.
Py(x) = ps(x)Qa(x). (5.4.8)

This simple result does not generalise completely to many dimensional situa-
tions, which are treated in Scct. 6.5. N
ii) Orthogonality of eigenfunctions: We can straightforwardly show by partial inte-

gration that

=2 f dxPy(x)Qy (%)

a

b
i [Q,v(x){‘A(x)P,n(x) + %3x[3(")’)'(")]} = 1 BP0 Qr ()] -
(5.4.9)

Using the reflecting boundary condition on the coefficient of Q«l'(x)» we see that
this coefficient vanishes. Further, using the definition of g(x, ) in terms of the

stationary solution (5.4.2), it is simple to show that
g 4.1
} B3, 01 (x) = AP (x) + $0BOPr (], (54.16)

so that term vanishes also. Hence, the Qa(x) and P;(x) form a bi-orthogonal

system

/ 5.4.11
Jdx Py(x)Qu(x) = b . ( )
There are thus are two alternative orthogonality systems,
/ 4.12
Jdx p(x)Q1(x)Qu(x) = bx » & )
(5.4.13)

; dx{ps ()] PA(x)Py(x) = 6ar -

It should be noted that setting A = ' = 0 gives the normalisation of the stationary
solution pg(x) since
Po(x) = ps(x),
Qo(x) = 1.
iii) Expansion in eigenfunctions: Using this orth.ogonality' (and assgming complete-
ness) we can write any solution in terms of eigenfunctions. For if

plx,n) = ZlA,l Py(x)e™,

(5.4.14)
(5.4.15)

(5.4.16)

then

b
Jdx Qi(x)p(x,0) = A,. (5.4.17)
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iv) Conditional probability: For example, the conditional probability p(x, t| xg,0)
is given by the initial condition

p(x,0]x0,0) = 6(x — xp), (5.4.18)
so that

Ay = afb dx Qu(x)d(x = x0) = Qa(xp), (5.4.19)
and hence,

plx, ] x9,0) = Zl Pi(x)Qa(xo)e ™. (5.4.20)

v) Autocorrelation function: We can write the autocorrelation function quite ele-
gantly as

(x(1)x(0)) = [dx [dxgxxg p(x,t|xg,0)ps(x), (5.4.21)
2
= Zl[f dx XPA(X)] e, (5.4.22)

where we have used the definition of Q,(x) by (5.4.5).

5.4.2 Eigenfunctions for Absorbing Boundaries

These are treated similarly.

We define P, and Q, as above, except that pg(x) is still the stationary solution of
the Fokker-Planck equation with reflecting boundary conditions. With this definition,
we find that we must have

Pya) = Qi(a) = Py(b) = Qa(b) = 0, (5.4.23)

and the orthogonality proof still follows through. Eigenfunctions are then computed
using this condition and the eigenfunction equations (5.4.6) and (5.4.7) and all other
results look the same. However, the range of A does not include A = 0, and hence
p(x,t]x0,0) = 0ast — oo,

5.4.3 Examples

a) A Wiener Process with Absorbing Boundaries: The Fokker-Planck equation
dp=1d%p, (5.4.24)
is treated on the interval (0, 1). The absorbing boundary condition requires
pO,1) = p(1,1) =0, (5.4.25)

and the appropriate eigenfunctions are sin(nmx) so we expand in a Fourier sine series
0

plx,t) = 1b,,(t) sin(nnx), (5.4.26)

n=

which automatically satisfies (5.4.25). The initial condition is chosen so that

5.4 Ekigentunction Methods ror HOmogeneous r'rocesses 12/

p(x,0) = 6(x — xo), (5.4.27)

for which the Fourier coefficients are

1
b,(0) = 2 [ dx8(x — xp) sin(nmx) = 2 sin(nmxg) . (5.4.28)
0
Substituting the Fourier expansion (5.4.26) into (5.4.24) gives
d_lﬁ,(_t) = _/lnbn(t) ’ (5429)
dt
with
Ay =n*? 2, (5.4.30)
and the solution
by(t) = b,y (0) exp(=Ant) . (5.4.31)

So we have the solution [which by the initial condition (5.4.27) is for the conditional
probability p(x, t|xo, 0)]

p(x,t]xp,0) =2 E exp(—A,t) sin(nmxp) sin(nmx) . (5.4.32)
n=1
b) Wiener Process with Reflecting Boundaries: Here the boundary condition re-
duces to [on the interval (0, 1)]
and the eigenfunctions are now cos(nmx), so we make a Fourier cosine expansion
p(x,0) = yag + § a,(t) cos(nmx), (5.4.34)
n=1

with the same initial condition

p(x,0) = 6(x = xo) , (5.4.35)
so that

a,(0)=2 ({1 dx cos(nmx)d(x — xg) = 2 cos(nmxgy) . (5.4.36)
In the same way as before, we find

ay(t) = a(0) exp(=Aat), (5.4.37)
with

Ay =72 [2, (5.4.38)
so that

px,t1%0,0) = 1 +2 3, cos(nmxg) cos(mmx) exp(—t) . (5.4.39)

n=1

As t — oo, the process becomes stationary, with stationary distribution
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ps(x) = ,132, plx,t]x,0) = 1. (5.4.40)

We can compute the stationary autocorrelation function by

11
(x(x(0))s = [ Of dx dxo x xo p(x,t| x9,0)ps(x), (5.4.41)
0
and carrying out the integrals explicitly,
1 8
(x(x(0))s = 7 + = X exp(=Aznn)@n+ 17*. (5.4.42)
4 7(4 n=0
We see that as r — o0, all the exponentials vanish and
1
()x(0))s = 7 =[x, (5.4.43)
andast — 0,
(x(0)x(0))s — ] §(2n+ D™= L2
STyt A A =37 (x5 (5.4.44)

when one takes account of the identity (from the theory of the Riemann zeta-
function)

o 4
m+1yd=1.

’E;O( n+1) % (5.4.45)
¢) Ornstein-Uhlenbeck Process: As in Sect. 3.8.4 the Fokker-Planck equation is

8,p(x, 1) = 8, lkxp(x, )] + $ DA% p(x,1). (5.4.46)
The eigenfunction equation for Q, is

2kx 24
d2Q, - 7d,.Q,l + BQ,I =108 (5.4.47)

and this becomes the differential equation for Hermite polynomials H,(y) [5.5] on
making the replacement y = x Vk/D:

d2Q, - 2yd, Q) + (2A/K)Q, = 0. (5.4.48)
We can write

Q1= @'ny""?H, (xvk/D) , (5.4.49)
where

A = nk, (5.4.50)

and these solutions are normalised as in (5.4.11-5.4.13).
The stationary solution is, as previously found,

ps(x) = (k/nD)"? exp(—kx*/ D), (5.4.51)
and a general solution can be written as
p(x,1) = 3 +k/@"'nnD)] exp(—kx*/ D)H, (x vk/D ) e A, , (5.4.52)
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with
A= [ dxp(x,0H, (x&k/D)@"nt)™""2. (5.4.53)

The result can also be obtained directly from the explicit solution for the conditional
probability given in Sect. 3.8.4 by using generating functions for Hermite polynomi-
als. One sees that the time scale of relaxation to the stationary state is given by the
eigenvalues

A, = nk. (5.4.54)

Here, k is the rate constant for deterministic relaxation, and it thus determines the
slowest time in the relaxation. One can also compute the autocorrelation function
directly using (5.4.22). We use the result [5.5] that

Hi(y) =2y, (5.4.55)

5o that the orthogonality property means that only the eigenfunction corresponding
to n = 1 has a nonzero coefficient. We must compute

[xPy(x)dx= [ dx \k/@2nrD) exp(—kxz/D) (2x k/D)x = +/D/2k, (5.4.56)
so that
(x()x(0)); = D u (5.4.57)
S 2k 9 &r.
as found previously in Sects.3.8.4 and 4.5.4.

d) Rayleigh Process: We take the model of amplitude fluctuations developed in
Sect. 4.5.5. The Fokker-Planck equation is

8,p(x, £) = Byl(yx — u/x)p(x, 1)] + pdp(x,1), (5.4.58)
where

u=e2. (5.4.59)
The range here is (0, ) and the stationary solution (normalised)

ps(x) = (yx/p) exp(=yx*[2u). (5.4.60)
The eigenfunction equation for the Q;(x) is

Q.+ (1/x - yx/pdsQa + (/1) Q1 = 0. (5:4.61)
By setting

z=xy/2u, (5.4.62)
we obtain

2d2Qy + (1 - 2)d:04 + (1/27)Q0,1 = 0. (5.4.63)

This is the differential equation for the Laguerre polynomials L,(y) [5.5] provided
A= 2n'y . (5.464)
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We can write

0a(x) = Lay*/241), (5.4.65)
which is normalised. Hence, the conditional probability is
2 2 2
oYX YXx X0 YXx 2
X, t|x0,0) = ¥ —exp|—5—|La| = [La{ —|e " 4.
p(x,t] x0,0) ,Eou p( 2#),(2#) ‘(2,1)6 (5.4.66)
We can compute the autocorrelation function by the method of (5.4.22):
o [ 2 2\12
b2 —yx vx
(x(H)x(0)) = Z[ xdx—ex ( )L, (———)] exp(—2nyt), 5.4.67
= ({ 7 P 2% 1 2% p( ¥t) ( )
and using
fdzz%¢™*L,(2) = (-1)"I'(a + 1)(Z), (5.4.68)
0
we find for the autocorrelation function
WITRL 4 1 2
(x()x(0)) = “ > —(2) exp(—2nyt). (5.4.69)
Y n=04\n

5.5 First Passage Times for Homogeneous Processes

It is often of interest to know how long a particle whose position is described by a
Fokker-Planck equation remains in a certain region of x. The solution of this problem
can be achieved by use of the backward Fokker-Planck equation, as described in
Sect. 3.6.

5.5.1 Two Absorbing Barriers

Let the particle be initially at x at time ¢ = 0 and let us ask how long it remains in the
interval (a, b) which is assumed to contain x:

a<x<b. (5.5.1)

We erect absorbing barriers at a and b so that the particle is removed from the system
when it reaches a or b. Hence, if it is still in the interval (a, b), it has never left that
interval.

i) Distribution of exit times: Under these conditions, the probability that at time ¢
the particle is still in (a, b) is

b
Jdx'p(x',t]x,0) = G(x,1). (55.2)
a

Let the time that the particle leaves (a, b) be T. Then we can rewrite (5.5.2) as

b
Prob(T > 1) = [dx'p(X,t| x,0), (5.5.3)
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which means that G(x, t) is the same as Prob(T > ?). Since the system is time
homogeneous, we can write

p(x,t]x,0) = p(x',0]x, 1), (5.5.4)
and the backward Fokker-Planck equation can be written

9,p(x',t]x,0) = A(x)3,p(x, 1] x,0) + 1Bx)8p(x',t]x,0), (5.5.5)
and hence, G(x, t) obeys the equation

0,G(x,t) = A(x)0.G(x, 1) + %B(X)@%G(X, t). (5.5.6)

ii) Initial condition: Clearly that

p(x',0]x,0)=6(x-x), (5.5.7)
and hence,

G(x,0) = { L asxsh (5.5.8)

0. elsewhere.

iii) Boundary conditions: 1f x = a or b, the particle is absorbed immediately, so
Prob(T > f) =0whenx=aorx=b,ie,

G(a,t) = G(b,t) =0. (5.5.9)

iv) Moments of the exit time: Since G(x,t) is the probability that T > ¢, the mean
of any function of T is

(f(T) = - [ fFOdG(x.1). (5.5.10)
0
Thus, the mean exit time (or mean first passage tine)
T(x)=(T), (5.5.11)
is given by
T(x) = — [13,G(x,t)dt (5.5.12)
0
= [G(x,t)dt, (5.5.13)
0
after integrating by parts. Similarly, defining
Ty(x) =(T"), (5.5.14)
we find
T.(x) = [ 'G(x, 1)t . (5.5.15)
0

v) Differential equation for the mean exit time: We can derive a simple ordinary dif-
ferential equation for T'(x) by using (5.5.13) and integrating (5.5.6) over (0, 00).
Noting that
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0}06[ G(x,Ndt = G(x,0) - G(x,0) = -1, (5.5.16)
we derive

AW T(x) + L B(x)PT(x) = -1, (5.5.17)
with the boundary condition

T(a)=T®H)=0. (5.5.18)
Similarly, we see that

=nT, 1 (x) = A(x)8,T,,(x) + $ B(x)I2T,(x). (5.5.19)

vi) Solutions of the Equations: Equation (5.5.17) can be solved directly by integra-
tion. The solution, after some manipulation, can be written in terms of

Y(x) = exp {Of dx'[2A(x")/ B(x’)]} . (5.5.20)
We find
X b dy' Jle//(Z) b dy X dyr y,leﬁ()
() ()
a w( ) )(l B .y a ! a
T(x) . B : Y vya BD | sy
4y
a Y(y)

5.5.2 One Absorbing Barrier
We consider motion still in the interval (a, b) but suppose the barrier at a to be re-
flecting. The boundary conditions then become
0:G(a,1) = 0, (5.5.22a)
Gb,t) =0, (5.5.22b)

which follow from the conditions on the backward Fokker-Planck equation derived in
Sect. 5.1.2. We solve (5.5.17) with the corresponding boundary condition and obtain

TG W(Z) a reflecting,
x) = b absorbi
{ U(y) f B ™ . <1 f°‘ ing, (5.5.23)
Similarly, one finds
b reflecting
«/f(z) 1S
T(x) = b
af U(y) y 55 B(z) Z:}) forb‘“gv (5.5.24)
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(a) (b) (c)
b
U(x) a ps(x) T(a—x)
—
a b
b a
X X X

Fig. 5.3. (a) Double well potential U(x); (b) Stationary distribution p(x); (¢) Mean first pas-
sage time from a to x, T(a — x)

5.5.3 Application—Escape Over a Potential Barrier

We suppose that a point moves according to the Fokker-Planck equation
8y p(x, 1) = 8:[U' (x)p(x, )] + DO p(x,1) . (5.5.25)

The potential has maxima and minima, as shown in Fig. 5.3. We suppose that motion
is on an infinite range, which means the stationary solution is

ps(x) = A exp[-U(x)/D], (5.5.26)

which is bimodal (as shown in Fig. 5.3) so that there is a relatively high probability
of being on the left or the right of b, but not near b. What is the mean escape time
from the left hand well? By this we mean, what is the mean first passage time from
a to x, where x is in the vicinity of 5? We use (5.5.23) with the substitutions

b—-x, a— -, x-a, (5.5.27)
so that
1 X Y
Ta—- x)= 5 JdyexplU(y)/D] [ exp[-U(z)/Dldz. (5.5.28)

If the central maximum of U(x) is large and D is small, then exp [U(y)/D] is
sharply peaked at x = b, while exp[-U(z)/D] is very small near z = b. Therefore,
J2, exp[-U(z)/D]dz is a very slowly varying function of y near y = b. This means
that the value of the integral %, exp[—U(z)/ D]dz will be approximately constant for
those values of y which yield a value of exp[U(y)/D] which is significantly different
from zero. Hence, in the inner integral, we can set y = b and remove the resulting
constant factor from inside the integral with respect to y. Thus, we can approximate
(5.5.28) by

1 b x
Ta—x) = {5 S dyeXp[—U(z)/D]}f dyexp[U(y)/D]. (5.5.29)
—oo 2
Notice that by the definition of pg(x) in (5.5.26), we can say that

b
[ dyexp[-U(z)/D] = n/. N, (5.5.30)



which means that n, is the probabilit icle i
L a 1S y that the particle is to th
system is stationary. P b

A plot ‘of T(a — xp) against x, is shown in Fig. 5.3 and shows that the mean first
passage time t.0 Xo is quite small for xq in the left well and quite large for x; in the
right well. This means that the particle, in going over the barrier to the riglgt well
takes most of the time in actually surmounting the barricr. It is quite meaningful t(;
talk of the escape time as that time for the particle, initially at a, to reach f point
near c, since this time is quite insensitive to the exact location of the initial and final
points. We can evaluate this by further assuming that near b we can write

2
N 1 x—b
U(x) =~ U(b) 2( 5 ) g (5.5.31)
and near a
N | [x—a\?
U =~ Ua)+ § ( <) (5.5.32)

The constant factor in (5.5.29) is evaluated as

b
- L0 [U@  @-a
_{; Zexp[ U(Z)/D] —'_!; dzexp[ T = ‘W 5 (5533)
~ @ V2rDexp[-U(a)/D], (5.5.34)

an the inner factor becomes, on assuming xo is well to the right of the central point

afdy exp U)/D] ~ [ dyexp [? - (yz;);)zJ , (5.5.35)
=6 V2nDexp[U(b)/D]. (5.5.36)

Putting both of these in (5.5.29), we get
T(a - x) ~ 2aén exp{[U(b) - U(a)]/D} . (5.5.37)

This 'is the classical Arrhenius formula of chemical reaction theory. In a chemical
react‘lon, we can model the reaction by introducing a coordinate such that x = q is
species A and x = c is species C. The reaction is modelled by the above diffusion
process and the two distinct chemical species are separated by the potential barrier
atb. In the chemical reaction, statistical mechanics gives the value

D=k
T, (5.5.38)

where k is Boltzmann’s constant and T is the absolute temperature. We see that the

most important dependence on temperature i
! comes from the exponentia i
1s often written P e

exp(AE/KT), (5.5.39)

gnd prc}dicts a very characteristic dependence on temperature. Intuitively, the answer
18 obvious. The exponential factor represents the probability that the ;nergy will
exceed that of the barrier when the system is in thermal equilibrium. Those molecules
that reagh this energy then react, with a certain finite probability.

We will come back to problems like this in great detail in Chap. 14.
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5.5.4 Probability of Exit Through a Particular End of the Interval

What is the probability that the particle, initially at x in (a, b) exits through a, and

what is the mean exit time?
The total probability that the particle exits through « after time ¢ is given by the

time integral of the probability current at a. We thus define this probability by

dalt) = — [ df J(a,?' | 5,0, (5.5.40)
t
= [t {-A@p(a, | %.0) + 18[B@p(a. | x,0))} (5.5.41)

the negative sign being chosen since we need the current pointing to the left. Simi-
larly we define

g t) = [ dt {AB)p(b. ' 1x,0) - L04[BB)p(B, ¢ | x,0)]} . (5.5.42)
t

These two quantities give the probabilities that the particle exits through a or b after
time ¢, respectively. The probability that (given that it exits through a) it exits after
time ¢ is
Prob(T, > 1) = ga(x,1)/ga(x,0). (5.5.43)
We now find an equation for g,(x, t), using the fact that p(a,t|x,0) satisfies a
backward Fokker-Planck equation. Thus,
A(X)3xga(x. 1) + 3 BOFiga(x. 1) = = [ dI'0p J(a, 1 | ,0),
{5
= J(a,t|x,0),
= 0:ga(x,1). (5.5.44)

The mean exit time, given that exit is through a, is
T(a,x) = — [t8;Prob (T, > t)dt = [ gu(x,t) dt/ga(x,0). (5.5.45)
0 0

Simply integrating (5.5.44) with respect to ¢, we get

A(x)0,[m, ()T (a, x)] + %B(x)@i[na(x)T(a, X)] = —ma(x), (5.5.46)
where we define

ma(x) = (probability of exit through a) = g,(x,0). (5.5.47)
The boundary conditions on (5.5.46) are quite straightforward since they follow from
those for the backward Fokker-Planck equation, namely,

ma(a)T (a,a) = n,(b)T(a,b) = 0. (5.5.48)

In the first of these clearly T'(a,a) is zero (the time to reach a from a is zero) and
in the second, 7,(b) is zero (the probability of exiting through a, starting from b, is
Z€ro).
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By letting t — 0 in (5.5.44), we see that J(a,0lx,0) must vanish if a # x, since.
pla,0]x,0) = 6(x — a). Hence, the right-hand side tends to zero and we get

A(X)0a(x) + 1 B(x)827,(x) = 0, (5.5.49)
the boundary condition this time being
ma(a) =1, m(b) =0. (5.5.50)
The solution of (5.5.49) subject to this boundary condition and the condition
Ta(x) + mp(x) = 1, (5.5.51)
is
b b
ma(x) = [{ dy t//(y)} / af dy ¥ (y), (5.5.52)
x b
mp(x) = [ f dy «ﬁ(y)] / f dy Y(y). (5.5.53)

with (x) as defined in (5.5.20).

These formulae find application in the problem of relaxation of a distribution ini-
tially concentrated at an unstable stationary point (Sect. 14.1.4).
Example—Diffusive Traversal Time of a One-Dimensional medium: A particle
diffuses in a one-dimension according to the diffusion equation Op = %D&%p. What
is the mean time for the particle to diffuse from & to a under the condition that it does
not leave the interval (a, b) before reaching a? [5.6]

In the case that the particle starts at x within (a, b), we find from (5.5.52) and
(5.5.46)

7a() = Z::, (5.5.54)
3 DO ()T o(x)] = —ra(x). (5.5.55)

Using the boundary conditions (5.5.48) the second equation is easily integrated to
give
(x ~b)(x — a)(x + a - 2b)
a Ta = )
Tl a(x) 3D - a)

(5.5.56)

and hence

(x—a)(2b-x—-a)
3D '

In the limiting case x — b, the probability of exit through a as given by (5.5.54), is

zero. Nevertheless, in the limit that x is approaches b, the mean time to make the exit
given that the exit is at a is quite well defined and is

_ (b-a)
Ta®) = === (5.5.58)

Ta(x) =

(5.5.57)
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This is also clearly the time to exit at a without ever leaving the interval (a, b) before

exiting at a. ' ;
Semi-infinite interval: Notice that if we fix x and let b — oo, we fin

(5.5.59)
(5.5.60)

ma(x) — 1,

To(x) — 0.
The result is that the particle is certain to escape at a, but the average t.imc to escape
is infinite. This arises because the particle can spend a great deal qf ur!"ne explprll'{g
the infinite half of the interval, giving rise to an escape time distribution which is
normalisable, but decays so slowly that all moments diverge.



